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Abstract
The decision on how to manage a forest under climate change is subject to deep and
dynamic uncertainties. The classic approach to analyze this decision adopts a predefined
strategy, tests its robustness to uncertainties, but neglects their dynamic nature (i.e., that
decision-makers can learn and adjust the strategy). Accounting for learning through
dynamic adaptive strategies (DAS) can drastically improve expected performance and
robustness to deep uncertainties. The benefits of considering DAS hinge on identifying
critical uncertainties and translating them to detectable signposts to signal when to change
course. This study advances the DAS approach to forest management as a novel
application domain by showcasing methods to identify potential signposts for adaptation
on a case study of a classic European beech management strategy in South-West
Germany. We analyze the strategy’s robustness to uncertainties about model forcings
and parameters. We then identify uncertainties that critically impact its economic and
ecological performance by confronting a forest growth model with a large sample of time-
varying scenarios. The case study results illustrate the potential of designing DAS for
forest management and provide insights on key uncertainties and potential signposts.
Specifically, economic uncertainties are the main driver of the strategy’s robustness and
impact the strategy’s performance more critically than climate uncertainty. Besides
economic metrics, the forest stand’s past volume growth is a promising signpost metric.
It mirrors the effect of both climatic and model parameter uncertainty. The regular forest
inventory and planning cycle provides an ideal basis for adapting a strategy in response to
these signposts.
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1 Introduction

Decision-makers in forest management face deep and dynamic uncertainties that can influence
the success of their forest management strategy, especially under climate change (Seidl et al.
2017; Augustynczik et al. 2017). Deep uncertainty is related to the Knightian definition of
uncertainty (Knight 1921) and refers to a situation in which experts do not know or parties
involved in the decision cannot agree upon (a potential subset of) (i) a probability distribution
of key factors (e.g., how probable different climate change scenarios are) and/or model
parameters (e.g., ecosystem models), (ii) the system and its boundaries (what parameters and
variables to consider and how they are interacting), and (iii) preferences regarding different
outcomes (Lempert et al. 2003). Consequently, decision-makers are able to define plausible
scenarios or a set of plausible probability density functions about the uncertain factors, but
cannot assign single probabilities to them (Marchau et al. 2019).

The importance of the deep and dynamic uncertainties in forest management is driven, in
part, by the long planning horizon in forestry. European beech (Fagus sylvatica) forests, for
example, have production times of more than 120 years in Central Europe. During that time,
decision-relevant factors can change drastically and the current forest management system
might not fit the new conditions anymore. Climatic change is a prominent and broadly
researched deep uncertainty that affects forest management (e.g., Augustynczik et al. (2017),
Lindner et al. (2014), Millar et al. (2007)). Other uncertainties that are critical to the success of
forest management are timber price and discount rate development, change in policies, and
stakeholder preferences (Yousefpour et al. 2012). Model parameters pose another source of
uncertainty, since parameters may not all be well-known and may vary regionally
(Augustynczik et al. 2017). Yet, model parametric uncertainty of forest simulation models
receives little attention in climate impact studies even though they can considerably add to
overall impact uncertainty (Reyer et al. 2016; Augustynczik et al. 2017).

Deep uncertainties pose nontrivial conceptual challenges and require different decision-
analytical approaches compared to a situation under well-characterized uncertainty (e.g., where
a single probability density function can be identified) (Lempert et al. 2003; Marchau et al.
2019; Walker et al. 2001). In forest management studies that focus on decision-making, deeply
uncertain factors are commonly represented by a limited amount of scenarios (see Petr et al.
(2019) for a review) and as time-independent rather than dynamic factors (e.g., constant
discount rates over time) (e.g., Augustynczik et al. (2017)). Improved quantification of these
uncertainties can potentially improve the design of forest management strategies. Approaches
that analyze decisions under deep uncertainty include robust decision-making (Lempert et al.
2003), many objective robust decision-making (Kasprzyk et al. 2013), dynamic adaptive
pathways (Haasnoot et al. 2013), adaptive policy-making (Hamarat et al. 2014), and direct
policy search (e.g., Quinn et al. (2017)). These are based on the idea that under deep
uncertainty, decisions cannot be optimized for just a best guess of the probability function
and the need to consider the robustness to the deep uncertainties. A typical approach to robust
decision making is to use system models that simulate the consequences of a strategy. The
models are run under a large ensemble of plausible futures to systematically explore the
uncertainty space (Kwakkel 2017). This approach provides insights into decision-relevant
characteristics such as the robustness of a decision alternative, its vulnerability to failure, and
the relative impact of the uncertainties on a strategy’s performance. Since these approaches
typically require a large number of model runs, the system models have to be computationally
nimble in the absence of very large computer allocations (Haasnoot et al. 2015). This typically
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requires the use of empirical (as opposed to highly complex and computationally expensive)
forest models. While empirical forest models may lack system processes such as carbon, water,
and nutrient cycles compared to process-based forest models (Augustynczik et al. 2017), they
are much more computationally efficient and thus a suitable basis for robust decision-making
(Trasobares et al. 2016).

In Germany’s managed forests, guidelines describe how to manage a forest stand at
different stages over the stand’s rotation period (e.g., for the state of Baden-Württemberg,
see Forst (2014)). Even though these guidelines acknowledge climate change, forest manage-
ment plans generally do not offer options for adaptation when new information about the
system dynamics is learned, e.g., updated climate forecasts. These guidelines are thus static
plans that are defined a priori for the entire planning period (e.g., a management plan that
suggests a certain stand density at different stand ages) as opposed to dynamic adaptive plans
that rather commit to short-term actions and allow adaptation to changing conditions, in order
to preserve performance when a critical threshold value is reached (Haasnoot et al. 2015).
Adaptive plans do not only react to vulnerabilities but can also seize opportunities to increase
performance (Kwakkel and Haasnoot 2019). The application of dynamic rather than static
robust decision-making approaches in other fields of natural resources management under
climate change has shown that dynamic approaches can considerably increase the performance
compared to static approaches (Garner and Keller 2018; Hamarat et al. 2014; Quinn et al.
2017).

A dynamic adaptive strategy (DAS) requires a monitoring system that identifies if and
when to change actions. Many adaptive decision analyses identify so-called signposts that are
used to trigger actions that either reassess, correct, or defend the basic strategy in order to
maintain performance requirements (Haasnoot et al. 2013) or even improve it (Kwakkel and
Haasnoot 2019). These signposts are based on critical uncertainties, i.e., uncertainties that
strongly affect the success of the policy (Raso et al. 2019). Exploratory modeling (Hamarat
et al. 2014), in combination with a global sensitivity analysis, is a highly recommended
approach to identify the relative importance of different deep uncertainties on the strategy’s
performance and thus to focus the monitoring on uncertainties that really matter (Herman et al.
2015; Kwakkel and Haasnoot 2019).

This study provides several key contributions. First, it introduces the use of exploratory
modeling for analyzing robustness in performance and identifying potential signposts for
adaptive forest management, as a novel application domain. Second, the case study provides
insights into the robustness of current management, the decision-relevant uncertainties, and
possible signposts. These insights can inform the design of a DAS. Third, it provides a new
test case to the research community of decision-making under deep uncertainty.

Specifically, we:

(i) Adapt an empirical, climate-sensitive beech growth model (Trasobares et al. 2016) for
application under a classical beech management (Altherr 1971) in South-West Germany,
which is based on a deterministic management plan and is thus an example of a static
strategy,

(ii) Test the vulnerability of the strategy to uncertainties by simulating stand development
under this strategy and under a large ensemble of plausible future pathways and model
parameter scenarios,

(iii) Identify which uncertainties most strongly influence the management objectives using
global sensitivity analysis (Sobol” 2001), and
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(iv) Suggest potential signpost parameters that can track these critical uncertainties for use in
designing a DAS as an alternative to a static strategy.

2 Methods

We structure the analysis using the “XLRM framework” (Lempert et al. 2003) (see Fig. 1).
The name XLRM represents the four components of the analysis. The decision lever “L” is the
management strategy. We evaluate the performance of the management strategy in the face of
exogenous uncertainties “X,” i.e., factors that a decision-maker cannot control (Knight 1921;
Kwakkel 2017). We treat structural uncertainty regarding the beech growth model parameters
as an external factor. The strategy’s performance is measured using two metrics “M,”
representing the economic and ecological performance, respectively: (i) the net present value
(NPV) from timber production and (ii) the net carbon sequestration in timber and timber
products. Relationships “R” describe how these elements relate to each other. We use a model
that simulates beech growth under a given management strategy and under predefined
scenarios of uncertain future pathways of climate change, timber price, and discount rate, as
well as model parameter uncertainty (X) to calculate the performance metrics (M) under each
uncertainty scenario. The performance under each scenario is the basis to calculate the
robustness of the strategy and to rank the impact each uncertainty has on the performance.
We detail the elements of the XLRM-framework in the following subsections.

2.1 Growth and management model

We choose a climate-sensitive, empirical beech growth model for our computationally intensive
analysis. We adopt the model developed by Trasobares et al. (2016). It directly integrates
climate sensitivity through two variables, both affecting diameter growth, height growth, and
mortality: drought index and degree-day index. Both indices are in the range [0,1], where 1
means no limitation of site productivity by the water amount or by temperature while values
lower than 0.7 represent negative effects by drought or low temperature (Trasobares et al. 2016).

Fig. 1 Analysis flow using an XLRM framework, which specifies the endogenous uncertainties (X), decision
levers (L), performance metrics (M), and the relationships (R) used to quantify the performance metrics for the
decision levers under given uncertainties

894 Climatic Change (2020) 163:891–911



www.manaraa.com

Both variables can be derived using precipitation and temperature data for the months of April–
October. The computation of the drought index additionally requires the water holding capacity
(WHC) (for 1 m of soil depth; mm) of the site. Additionally, both climate indices include
threshold values that indicate whether site productivity is limited by the WHC or the sum of
degree days, respectively. The model is implemented in the R programming language, is
computationally efficient, and given the relative simplicity also rather transparent (see
Section 2.1.2 for details). The model simulates tree growth and harvest of even-aged beech
trees and aggregates the data at the stand level. The management module offers three different
management patterns that define the forest stand’s density over time, measured by the basal area
(m2/ha), which is the cross-sectional area of trees at breast height (1.3 m above the ground).
These three management patterns distinguish themselves by the diameter sizes harvested and
that have to be specified for each management event: “High” management removes trees
starting with the highest diameter classes and then declines until a desired basal area is reached.
“Low” management starts by harvesting trees from the lowest diameter classes and “uniform”
management removes trees uniformly over all diameter classes. Trasobares et al. (2016) use data
from beech stands all over Switzerland to calibrate the model and also the threshold values for
the climate indices, where a WHC< 210 mm and a sum of degree days (sum of temperature
(°C) for days with > 5 °C daily average, April–October) < 1900 mean that site productivity is
limited. The model requires input initial stand data (diameter distribution per hectare), a
management strategy which defines the desired stand density, as well as climate data (6-year
averages) for every 5-year period. It is described in detail by Trasobares et al. (2016).We choose
a classical beech management (Altherr 1971), which predetermines the stand density over the
rotation period by a “basal area curve.” Even though it is not practiced anymore rigidly, many
elements of current forest practices are taken over fromAltherr (1971), especially the promotion
of the so-called future crop trees. These crop trees are released by early and intensive removal of
the directly competing trees. Additionally, this management has been extensively tested by the
Forest Research Institute of Baden-Württemberg (FVA) (Klädtke. J.). As a result, there is a
treasure trove of long-term data from test plots in South-West Germany, as described below.

2.1.1 Adapting the model to the study site

To check its viability for the study region in South-West Germany, we confront the model
with recorded stand and harvest data of a trial plot that applies the management strategy
(Altherr 1971) since 1969, provided by the FVA. The model predictions with the original
parameter estimates for Switzerland are not satisfying for the case study location (see Fig. 2).
They (1) underestimate basal area growth and (2) have a different harvest pattern for a “high”
management. We thus calibrate the tree growth and mortality parameters and adapt the “high”
management module according to the recorded observational data as described in detail in
Online Resource 2.

We fit the model parameters of the diameter and height growth functions and the mortality
functions by minimizing the root mean squared error (RMSE) of yearly volume growth per
hectare between harvest events for every 5-year period in 1969–2014 using a differential
evolution algorithm for global optimization (R-package DEoptim) (Mullen et al. 2011). The
optimization algorithm searches between ± 5 * standard error bounds around the original
parameter values (Online Resource 1, Table ESM1). R-code and data for the precalibration and
the analyses described below are available at https://github.com/NaomiRadke/robustness_
sensitivity_analysis.
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2.1.2 Management objectives

We measure the performance of the management strategy using two potentially conflicting
objectives: (1) NPV of timber harvest and (2) net carbon sequestration. We focus on two
objectives to start with a simple and parsimonious example. There are, of course, additional
relevant objectives that can be analyzed using our general framework. However, high-
dimensional and complex trade-off analysis can lead to complex communication and
decision-support challenges (Oprean et al. 2019).

The NPVTimber is the sum of financial flows from timber production discounted to net
present value. The financial flows comprise revenues from selling the timber harvested in each
period i.e., the stem volume removed at time t, Vt, multiplied by market price P net of the
harvesting cost C. The NPV also takes into account the difference between the value of the
initial stand state and the discounted value of the remaining stand at t = 123 (stand age
123 years) according to:

NPVTimber ¼ ∑
T

t¼1
f itV t Pt−Ctð Þ−FC þ f iTVT PT−CTð Þ−Vt¼0 Pt¼0−Ct¼0ð Þ

where f it ¼ 1
1þitð Þ

t is the discount factor with the interest rate i at time t. The interest rate it is

variable over time (see Section 2.2). We calculate the time-variable net wood prices (Pt-Ct) as a
function of individual tree diameter, using prices for different assortment classes in Baden-

Fig. 2 Current stand volume growth at different stand ages for observed data, best fit model parameters, and 84
other model parameter scenarios with an acceptable deviation from observations
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Württemberg and diameter-dependent harvest costs by Härtl et al. (2013). We derive a
diameter-dependent net price curve by first sorting the tree stems into different assortment
classes and industrial wood using the BDATPRO program by the FVA (Kublin and
Scharnagel 1988). We then multiply the fractions of each stem that are sorted into specific
classes by the respective price and on that basis calculate the revenue of a stem with a specific
diameter. We then fit a curve to the revenue-diameter relation. We do not consider planting
costs since we start our analysis at an advanced stand age (63 years) and the considered beech
tree stand is naturally regenerated (Augustynczik et al. 2017). We deduct fixed costs (FC) of
175 Euro per hectare and year to account for other costs such as administration.

The net carbon storage is the sum of additional carbon sequestration through forest
management over a time horizon of 60 years:

Net carbon sequestration ¼ ∑T
t¼1ΔCarbt

where the additional carbon sequestration in each 5-year period is the balance between
periodic carbon sequestration through above-ground tree biomass growth gt minus periodic
emissions from wood product decay ut:

ΔCarbt ¼ gt−ut

based on Härtl et al. (2017). Carbon stored in above-ground biomass and wood products is
based on the equation adapted from Pistorius et al. (2006):

Carb ¼ V*Ds*VEF
�h i

*CF

where V is the stem volume, Ds is the bulk density of the stem, VEF is the volume expansion
factor from stem to total above-ground tree volume, and CF is the carbon factor
(Online Resource 1, Table ESM2). We consider only the volume of above-ground wood since
this is the usual indicator measured and controlled by forest managers (Härtl et al. 2017).
While gt is calculated as the difference in the stand’s carbon stock after harvest at time t-1 and
before harvest at time t, ut is calculated as follows. Harvested trees are turned into different
wood products (e.g., fuelwood, construction materials) with different lifetimes and the carbon
stored in these products is thus emitted at different points in time. We calculate the average
lifetime of a tree as a function of its diameter (Online Resource 1, Table ESM4) based on the
fractions of stem wood and industrial wood (including felling residues like tops, branches) that
go into different product classes for Germany and the average lifetimes of each product class
(Pistorius et al. 2006) (Online Resource 2, Table ESM3).

Periodic emissions of a harvest event are:

ut ¼ ∑
n

i¼0

Carbi
LT i

*5

where Carbi is the carbon sequestered in a harvested tree’s (i) above-ground biomass at time t.
Following Härtl et al. (2017), we assume a linear decay of the carbon in wood products over
their lifetime LTi; thus, in every time period t Carbi /LTi tons of carbon are emitted for a single
tree until all Carbi is emitted. The periodic emissions at time t, ut, are composed of the periodic
emissions of the current and the preceding harvest events.
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2.2 Creating scenarios to sample uncertainties

To quantify the (relative) impact of climate change, timber price, discount rate, and model
parameter uncertainty on the performance of the management strategy, we first sample these
uncertainties. We construct this sample by crossing a number of selected samples from the
uncertain factors as explained below.

We create model parameter scenarios adopting a precalibration approach to identify model
parameter combinations that fit the observations reasonably well. Precalibration is a well-
established and well-tested approach to identify model parameter samples that are broadly
consistent with the observational constraints (Edwards et al. 2011). Precalibration is concep-
tually simpler than more refined methods, but can provide a useful starting point, especially in
the face of complex and deeply uncertain observation errors and model structural errors (e.g.,
Ruckert et al. (2017)). Similar to related approaches such as the GLUE method (Beven and
Binley 1992), precalibration uses a simplified metric to define the set of acceptable parameter
samples. We start by drawing 100,000 stratified random samples using Latin Hypercube
sampling (McKay et al. 1979) from a range of model parameter values that have a RMSE
in yearly stand volume growth that is maximum 5% higher than the RMSE of the optimal
parameter set in the optimization process described in Section 2.1.1. We run the model for
each sample and calculate the current stand volume growth (m3/ha/year). We select all
scenarios that lead to a maximum deviation of 3 m3/ha/year from the observed current volume
growth as a sample of model parametric uncertainty.

Climate change scenarios are created based on 20 climate forecasts that result from 5
climate models, sampling the published representative concentration pathways (RCP) scenar-
ios (2.6, 4.5, 6.0, and 8.5) (Meinshausen et al. 2011), taken from The Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP2) Fast Track project (details in Table 1). We turn the
daily temperature (°C) and precipitation (mm) data into 6-year averages for every 5th year
(according to the simulation pattern of the forest model) and calculate the drought index and
degree day index as climatic input variables for the forest model (see Section 2.1) according to
Trasobares et al. (2016).

Timber price and discount rate scenarios are calculated by fitting an Autoregressive
Integrated Moving Average model (ARIMA) time series model to observations (see
Table 1). We use the ARIMA estimation and simulation function from R’s forecast package
(Hyndman and Khandakar 2008). ARIMA models are statistical models for analyzing and
forecasting time series data that approximate the observed temporal structures. The statistical
model assumes stationarity. We choose the ARIMA model type by running the automated
ARIMA function from the forecast package which searches over possible models and returns
the best ARIMA model according to different goodness-of-fit criteria. We verify the model
choice using the (partial) auto-correlation function plots. We use the ARIMA to simulate ten
forecast scenarios. Since we have no access to long-term records of timber prices for different
assortment classes (see Section 2.1.2), we use a price index with base year 2010 (2010 = 100)
(Statistisches Bundesamt 2019) for scenario creation which is available for more than 50 years
into the past. From these price index scenarios, we derive the actual changes in timber prices.

2.3 Measuring robustness

There are three main approaches for measuring the robustness of a strategy: (i) satisficing
metrics, (ii) regret metrics, and (iii) descriptive statistics of the distribution of model outcome
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over all scenarios (see McPhail et al. (2018) for an overview). To evaluate the robustness of the
static management strategy under uncertainty, we choose the “satisficing” robustness approach
(Hall et al. 2012), as it focuses on meeting the decision-makers’ minimum performance
requirements. A strategy is robust if it performs satisfactorily over many plausible future
scenarios. Minimum performance requirements are set for the management objectives and in
the more scenarios these requirements are met, the more robust a decision alternative is. We set
minimum performance requirements using a “break-even” perspective for the NPV and a net
carbon sequestration of at least zero. This means no net economic losses and carbon seques-
tration equals out the emissions from management.

We consider cases with and without a monetary compensation for the additional carbon
sequestration. To showcase what effect the introduction of such a carbon policy might have on
the robustness of the management strategy, we contrast a range of carbon taxes with robust-
ness. Offering a revenue for carbon sequestration may level out a negative NPV of timber
yield. The degree of robustness is measured as the fraction of scenarios in which the NPV,
composed of discounted revenues from timber yield and carbon sequestration, is positive. This
NPV is calculated for 241 carbon tax scenarios over a range of [0, 120] Euro per ton carbon
sequestered.

2.4 Sobol global sensitivity analysis

We perform a global sensitivity analysis to rank the relative impact of uncertainties on the
performance of objectives. This serves as a basis for identifying potential signposts for
adaptation. We use the Sobol sensitivity analysis as developed by Sobol” (2001) and extended
by Saltelli (2002) and Janon et al. (2014). The Sobol sensitivity analysis decomposes the
variance in a model response into fractions attributable to the individual uncertain factors (both
model parameters and forcings). We run the sensitivity analysis for the two objectives

Table 1 Uncertainties considered for endogenous model parameter uncertainty and exogenous forcings and their
depiction. Abbreviations: SE, standard error; ARIMA, autoregressive integrated moving average model; ISIMIP2,
The Inter-Sectoral Impact Model Intercomparison Project; RCP, Representative concentration pathway

Uncertainty Scenario creation method #
scenarios
selected

Source

Forest growth
model
parameters

Selection of scenarios with an acceptable deviation
from observation. Scenarios created by stratified
sampling of ± 5* SE of original parameterization

84 Precalibration, this study

Climate futures
(drought
index)

Calculation of drought index and degree day index
based on precipitation and temperature forecasts by 5
global climate models with RCP scenarios 2.6, 4.5,
6.0, and 8.5 each extracted for lon = 9.30, lat = 49.42
(study stand). Global climate models:
GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR,
MIROC-ESM-CHEM, NorESM1-M

20 ISIMIP2 Fast Track
project (Hempel et al.
2013)

Timber price Simulations from fitted ARIMA(1,0,0)
model to timber price index (averaged over species and

products) 1967–2019

10 Statistisches Bundesamt
(2019)

Discount rate Simulations from fitted ARIMA (2,0,3) model to real
interest rates on household deposits 1967–2019

10 Deutsche Bundesbank
(2019)
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separately. We attribute the variance in NPV of timber yield to model parameter, climatic
(drought index), timber price, and discount rate uncertainty and the variance in net carbon
sequestration to model parameter and climatic uncertainty. We do not look at the impact of the
model parameters individually but at the total model impact on the objectives’ variance. We
report first-order and total sensitivity indices. First-order Sobol sensitivity indices calculate the
direct influence of each uncertainty (model and exogenous forcings) on the projected objec-
tives. Total sensitivity indices additionally take into account the influence of interactions
between the uncertainty terms (Sobol” 2001). We use stratified random sampling (Latin
hypercube) to sample uniformly from the scenario ensemble (scenarios created in
Section 2.2). For the net carbon sequestration sensitivity, we only take the ensemble of model
parameter and climate parameter scenarios into account. Latin hypercube samples over a range
of [0,1]. Each sample is then matched to a scenario according to an interval of 1 divided by the
number of scenarios for the uncertain factor; e.g., a sample value of 0.01 is matched to scenario
1 (out of 10 timber price scenarios) and 0.9 matched to scenario 10.

We select 700 bootstraps samples from this sample to estimate the confidence
intervals for the sensitivity indices. The estimated confidence intervals are all smaller
than 10% of the largest total sensitivity index. Following previous work (Wong and
Keller 2017), we interpret this as an indication that increasing the sample size for the
Sobol analysis is not a high priority.

2.5 Identifying potential signposts

The Sobol analysis identifies key uncertainties, i.e., those that have a critical impact on the
strategy’s performance. A prerequisite for tracking is a signpost’s observability (Garner and
Keller 2018; Haasnoot et al. 2015; Raso et al. 2019), i.e., how easily its development is
observable and how easily we can obtain observational data. We choose the key uncertainties
and evaluate qualitatively whether their metrics could serve as signpost parameters or whether
a proxy is needed. The uncertain factor can be the signpost itself, if it is directly observable
(Raso et al. 2019). Otherwise, one can choose an observable proxy that represents the impact
of the uncertain factor and at the same time has an effect on the management objective(s).

3 Results

3.1 Model adaptation

The model’s fit to observational data is considerably improved by adapting the forest model’s
management module and optimizing the model parameters (Fig. 2), cutting the RMSE
between observed and simulated data in about half (Online Resource 1, Table ESM1). We
find 84 model parameter scenarios with an acceptable deviation in current stand volume
growth from observed data. The current stand volume growth of the acceptable model
parameter scenarios and the best fit scenario deviate less than the maximum acceptable bound
of ± 3 m3/ha/year from observed data and largely follows the same pattern. There is a single
outlier at age 83 and we increased the acceptable deviation to 6 m3/ha/year at this point in order
to yield a set of acceptable model parameter scenarios.
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3.2 Scenario creation

The span of temperature and precipitation projections by different global climate models for
different RCPs (Online Resource 1, Figures ESM1 and ESM2) translate to strong divergences
in the drought index (the climate forcing for the adopted beech growth model)
(Online Resource 1, Figure ESM3). The gap between the different scenarios increases with
an increasing time horizon: While some scenarios predict low index values that suggest a
strong limitation of the site productivity by drought, other scenarios remain close to 1 which
means there is no limitation on site productivity by drought. Noticeably, the recorded climate
data translates to a periodically low drought index, suggesting that there have been strong
limitations on site productivity by drought already in the past 60 years.

We fit an ARIMA (2,0,3) and an ARIMA (1,0,0) model to the discount rate and timber
price index time-series data, respectively (scenario results see Online Resource 1,
Figure ESM3). The discount rate scenarios have a broad span with most scenarios rotating
between − 2 and 2%. The strong downward trend into the negative discount rates does not
continue for any scenario. The projections, mirroring the past, show strong oscillations for
each scenario over time. Timber price scenarios include both upward and downward-trending
scenarios. Prices may double compared to the 2010 reference level and at the other end, they
can decrease to about half the reference price or even lower in a few periods.

3.3 Robustness of the static management strategy

We calculate the strategy’s performance under 168,000 scenarios which result from enumer-
ating all the model forcings and parameter scenarios (Table 1). We find that both objectives
vary strongly under the considered uncertainties (Fig. 3). The NPV of timber ranges between
about − 7000 and 29,400 Euro/ha over the period from stand age of 63 to 123 years, thus from
unviable to highly profitable. The distribution of NPV timber yield is unimodal, asymmetric,
and left skewed. Ninety percent of the scenarios yield an NPV below about 10,700 Euro/ha;
thus, few scenarios suggest a very high profit. The distribution of the net carbon sequestration
is multimodal, remains positive under all scenarios, and ranges from about 80 to 200 t C/ha.
The high variability in the two objectives alone does not mean that the current static
management strategy is vulnerable (not robust), according to our definition of robustness.
Indeed, the strategy satisfices the carbon sequestration minimum requirements under every
scenario (Fig. 3). However, an economic breakeven is only reached in about 76% of the
scenarios which means the current management strategy is not very robust and thus susceptible
to uncertain future conditions.

However, we run a thought experiment and introduce a carbon tax that compensates for
additional carbon sequestered. Figure 4 shows that a carbon tax of around 25 Euro per ton
carbon can compensate for a negative NPV from timber yield in about 95% of the scenarios,
thus increasing robustness substantially. The trade-off curve between robustness and carbon
tax levels out at around 75 Euro/t C where an additional raise in carbon tax has only a marginal
positive effect on overall robustness.

3.4 Potential signposts

Recall that the global sensitivity analysis quantifies the relative contribution of each uncer-
tainty on the total variance for the two objectives. A high total order sensitivity indicates a
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potentially important factor determining the robustness of the considered strategy. The results
show that the values of the 1st and the total order sensitivity indices only barely differ
(Online Resource 1, Figure ESM4). This indicates a very weak interaction among the
uncertainties. The variance in NPV of timber yield is mainly driven by economic uncertainties,
especially by the discount rate, while the climatic uncertainty has a negligible impact, at least
in relative terms (Table 2). In contrast, climatic uncertainty is responsible for most of the
variance in net carbon sequestration. Perhaps surprisingly, the uncertainty surrounding the
beech growth model has a small impact on both objectives.

Given their critical impacts on the objectives, the observable discount rates and drought
indices are promising candidates to observe and to define signposts for. Both variables are
directly observable (Table 2), so the signpost can be designed as a function of the real discount
rate, and observed temperature (Online Resource 1, Figure ESM2) and precipitation rates
(Online Resource 1, Figure ESM1). Nevertheless, their usefulness as signposts needs further
testing.

As Haasnoot et al. (2015) point out, signposts are usually close to the metrics of the
objectives, in our case NPV of timber yield and net carbon sequestration. Especially in the case
of climate uncertainty, signposts may be more useful if they relate to the impacts as opposed to
the forcings, for example, a metric directly influencing the carbon sequestration as opposed to

Fig. 3 Trade-offs between NPV of timber yield and net carbon storage (in above-ground biomass and timber
products) between stand age 63 and 123 years under each of the 168,000 scenarios (composed of model
parameters, climate, timber price, and discount rate) and their distribution. The black dot denotes the outcome
under a best estimate scenario (best-guess model parameter scenario and mean timber, climate, and discount rate
scenarios). Scenarios that meet the minimum requirements (NPV > 0, net carbon sequestration > 0) are shown in
green and those that fail are colored in gray. The ideal outcome is indicated by the red star. The arrows indicate
the preferred direction of the objectives
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more indirectly linked variables such as climate itself (e.g., the drought index). One approach
to implement and test this is to define a signpost in terms of above-ground tree volume growth
over a reasonably long time period, which directly impacts both NPV of timber yield and net
carbon sequestration. While temperature and precipitation show a sizable variability (see
Online Resource 1, Figures ESM1, and ESM2) that can lead to false-positive signals, longer
term trends in above-ground stand volume may send a clearer signal of the impact on our
objectives. Forest inventories are conducted on a regular basis (usually every 10 years in
Germany) and can thus provide information on the stand’s volume growth. These values can

Fig. 4 Trade-off curve of introducing a carbon policy with a certain carbon tax per ton additionally sequestered
carbon (in above-ground biomass and timber products over stand age 63–123 years) and the resulting robustness
(percentage of scenarios where NPV > 0) of the business-as-usual management strategy where NPV is the
discounted revenues from timber yield and carbon sequestration. Current price level as of January 17, 2020

Table 2 Usefulness of uncertainties as potential signposts according to their (rounded) relative impact (total-
order Sobol indices) on NPV of timber yield and net carbon sequestration, whether the uncertainty can be directly
observed and if not and what could be a potential proxy for the uncertainty

Uncertainties Impact on performance Direct
observability

Potential proxy

NPV
timber

Net carb.
seq.

Drought index 7.21% 84.05% Yes 10-year stand volume growth (m3/ha)
Timber price

index
22.54% / Yes Current timber price (averaged over

assortments)
Discount rate 68.48% / Yes /
Model

parameters
8.67% 16.51% No 10-year stand volume growth (m3/ha)
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also be used for updating model parametrization, since stand volume development over time is
a model output that reflects the whole bandwidth of model parameter uncertainties (diameter
and height growth, mortality functions) and can be compared to the observed volume
increment. Past volume increment can thus serve as a signpost for both climate and model
parameter uncertainty. Change in drought index results in almost the same change in the
corresponding volume increment over different time steps and uncertainty scenarios (Fig. 5).
The correlation between the two signposts is close to one (black line). As a result, using both
signals as signposts would be partially redundant. This is consistent with the discussion in
Raso et al. (2019) regarding parsimony: Not every critical uncertainty needs a separate
signpost if the uncertainties do not need to be distinguished for taking an adaptation action.

4 Discussion

The key objectives of this paper are to (i) illustrate how existing methods can be transferred to
inform robust decision-making in a forest management decision problem, (ii) gain insights into
decision-relevant uncertainties and potential signposts, and (iii) provide a novel test case for
robust decision-making methods. We discuss below (i) the methods transfer to forest man-
agement and (ii) lessons learned from applying the methods to our case study. We also address
the limitations and open research needs.

4.1 Model parametric uncertainty

Model parameter uncertainty is often disregarded when quantifying the impact of overall
uncertainties in forest management despite its relevant role (Augustynczik et al. 2017; Reyer

Fig. 5 The two potential signposts (past stand volume increment and drought index) show a high correlation
(blue linear regression line). The black line denotes a hypothetical correlation of one. Each point is a simulation
of a 5-year stand volume increment given a drought index for different time steps and scenarios (climate, model
parameter)
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et al. 2016). We use precalibration to derive model parameter uncertainty, i.e., model param-
eter combinations that have an acceptable fit. Our uncertainty representation could be im-
proved by complementing precalibration prior to search with data from the literature as in
Augustynczik et al. (2017) who used Bayesian calibration to fit the model and validation data
to calculate model parameter uncertainty.

4.2 Scenario selection for exogenous uncertainties

The results of the robustness and the sensitivity indices are highly dependent on the scenario
choices, namely which scenarios are picked, on which basis they are created, and which priors
were chosen. We select these exogenous uncertainties based on our perceived importance for
the decision and on the availability of data to create scenarios. At the same time, there are, of
course, other uncertainties that might have an impact on forest management decisions such as
the market demand and policies that pose requirements. Also, changes in wood characteristics,
when trees adapt to climate change and diseases, may have an impact. Some uncertainties
cannot be included due to the limitations of the model: The occurrence and impact on
disturbances and pests, for example, are not accounted for in this adopted beech growth
model. While the general practice in forest science represents discount rate uncertainty by
rates that remain constant over time, e.g., 1–5% scenarios (e.g., Augustynczik et al. (2017)), or
more recently also declining discount rates (Knoke et al. 2017), we choose to fit a time series
model and make simulations in order to account for variations of the discount rate over time.
This technique has previously been applied by Newell and Pizer (2003). Their study uses
simulations from a time series model fitted to historical bond data to calculate a certainty-
equivalent rate. Very untypically to common practice in discounting, we also choose scenarios
that include negative discount rates. These imply that future cash flows are valued higher than
present cash flows. The negative discount rates result from the fact that the negative real
interest rate on household deposits for Germany has stayed negative since 2010. While we fit a
time series model and sample predictions from this model, other studies that represent timber
price uncertainty mainly stick to random draws from a fitted distribution (Augustynczik et al.
2017) or Monte Carlo simulations (Messerer et al. 2017; Roessiger et al. 2011) that also rely
on random picks from recorded data. We derive price scenarios based on a timber price index
that represents the price development averaged over all timber products and tree species in
Germany. We choose this index as it has a long record, in contrast to pure beech prices that
have no homogeneous long-term record. Since deciduous and coniferous timber prices have
different variation patterns, this timber price index is not perfectly fit for beech price uncer-
tainty, but is used in this study to showcase the scenario creation method. We focus on the
drought index as an indicator of climatic uncertainty. Since the precipitation and temperature
scenarios all lead to the same degree-day index value, there is no need to include this indicator
as an uncertainty.

4.3 Robustness of static thinning plan

We define a robust strategy as one that satisfies minimum performance requirements in as
many of the plausible future states as possible. Intuitively, robustness is often understood as
minimizing the performance variance (Hamarat et al. 2014). Our results illustrate that a highly
variable performance does not necessarily imply non-robustness: Variance can also be positive
as it shows that performance can be improved under specific scenarios. Both objectives can be
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largely improved compared to their best estimate performance. The projected net carbon
sequestration is positive over all scenarios which is partially due to the high amount of carbon
that is stored over long times in wood products. Robustness is highly dependent on how the
preferences and minimum performance requirements regarding management objectives are
allocated (Radke et al. 2017). Here, we define that both objective metrics need to be positive,
so that the strategy is both economically profitable and has no negative carbon effect. While
these settings lead to a relatively low robustness, a more carbon-oriented management would
potentially accept a negative NPV of timber yield and might therefore be fully robust in our
example. In turn, a market-oriented management that aims at profits beyond a breakeven
would have a considerably lower robustness. It is insightful to consider how different levels of
a policy could improve robustness. Here, the introduction of a carbon tax, even below the
current carbon price level, could improve robustness by weighing out a negative NPV of
timber yield by incomes from carbon sequestration. While we use a “satisficing” robustness
approach as described earlier, in reality, different robustness metrics exist, e.g., regret-based
and other satisficing-based (see McPhail et al. (2018) for an overview) that can lead to very
different robustness outcomes (Hadka et al. 2015; Herman et al. 2015). The satisficing
robustness approach we chose is highly suitable when a decision is tied to minimum
performance requirements that need to be fulfilled. The choice of metric should thus be
dependent on the decision context. Analyzing the robustness under different metrics can be
insightful, too, and can help understand the decision context better (Herman et al. 2015; Hadka
et al. 2015).

We analyze a simple and parsimonious set of objectives that span economic and ecological
considerations. In reality, forest management decisions often encompass more objectives
relating to additional forest functions and services such as biodiversity conservation and
recreation (see Blattert et al. (2017) for a review on relevant objectives and indicators). The
methods we apply here are restricted to objectives that can be derived from the model output.
Generally, it is possible to expand the model and define metrics for objectives from a variety of
domains as shown by Blattert et al. (2017). This may lead to a more complete picture of a
typical forest management decision problem. Although it is possible to take into account
multiple outputs in the analysis, it should be noted that t decision-makers can struggle with
successfully navigating high dimensional objective spaces (Oprean et al. 2019).

4.4 Decision-relevant uncertainties and potential signposts

The relative sensitivities of the uncertain factors provide a basis for evaluating their potential as
signposts for adaptation.

While the relative importance of discount rate and model parameter sensitivities in the case
study are in line with observations from other studies (e.g., Augustynczik et al. (2017)), the
behavior of the climatic sensitivity is perhaps more surprising. While the climate change metric
has a negligible impact on economic performance, it has a dominant impact on carbon
sequestration. This is not immediately obvious, as both the economic and the carbon perfor-
mance metrics depend on the harvested volume. Yet, the carbon sequestration also depends on
the amount of harvested carbon that is stored in different wood product classes, which can at
least at first glance explain this phenomenon.

We pick those uncertainties that crucially impact the strategy’s performance and translate
them to metrics that are observable and give clear signals. While we do a computationally
somewhat involved global sensitivity analysis and check observability and parsimony in a
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qualitative, intuitive way, other studies elicit signposts in more or less depth. Generally, they
are based on expert judgments and sometimes on scenario discovery or other vulnerability
analysis but there often is no systematic approach (Haasnoot et al. 2015; Raso et al. 2019).

Choosing a signpost that can be easily related to a system’s state, e.g., growth in the stand’s
volume can be related to the volume that should be harvested, is required for some dynamic
robust decision approaches. This is demonstrated, for example, by Garner and Keller (2018) in
their application of Dynamic Policy Search for dike height decisions under uncertain changes
in local sea levels. A criterion for signpost selection which we were silent on here is the ability
to detect its change on time (Raso et al. 2019) and without giving false-positive alarms for
adaptation (Haasnoot et al. 2015). This is especially a challenge for extreme events such as
wind throws by storms that have an immense impact on the stand’s performance while at the
same time its rarity reduces the capacity to observe such events. These rare but high-risk events
are not accounted for in this forest model and thus are out of scope for this study.

A recommended next step before implementing a DAS is to evaluate the monitoring system
as a whole for its completeness, redundancies, and synergies (Raso et al. 2019). Also, triggers
need to be elicited i.e. critical values of the observed signpost metrics that signal when to
adapt. Triggers can be elicited by identifying areas of the uncertain factors that lead to
vulnerabilities or opportunities (see Kwakkel and Haasnoot (2019)).

5 Conclusions

The multi-objective nature of forest management in the face of multiple deep uncertainties,
including climatic change, poses non-trivial decision-problems. In this case, guidance on how
to account for and deal with these uncertainties can be rather useful. Forest management is
commonly based on static plans over a stand’s rotation period which are susceptible to failure
if the future turns out different than expected. Dynamic adaptive robust decision-making
approaches provide methods that identify and track decision-relevant uncertainties to adapt
the current strategy when needed with the potential for improved performance. They have
found successful application in other fields of natural resources management under deep
uncertainties. This paper now introduces a set of these methods for identifying decision-
relevant uncertainties and potential signposts to forest science. Signposts signal the need for
adapting the current strategy so that it becomes dynamic and adapts to new knowledge. This
work thus advances dynamic, adaptive robust decision-making in the field of forest manage-
ment by showcasing how existing methods can be translated to a case study of forest
management under climatic, economic, and model uncertainties at the stand level. The case
study results exemplify how a strategy’s robustness can be tested and provide insights into the
relative importance of climatic uncertainty compared to other uncertainties. On that basis, it
discusses potential signposts for adaptation. While the considered strategy is especially
vulnerable to economic uncertainties, our analysis suggests ways how the introduction of a
carbon policy can improve its robustness. Perhaps surprisingly, climatic uncertainty strongly
influences carbon sequestration objectives, while it has a negligible impact on the NPV of
timber yield. As the uncertain economic factors are easily traceable, they are obvious candi-
dates for signposts. The stand’s current volume growth is another promising signpost that
captures well the effects of climate change without giving false positive signals. It is a key
metric tracked during the regular inventory and planning cycles. This established system thus
offers a promising basis for DAS that are regularly evaluated. This work provides a foundation
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for further evaluating the usefulness of the proposed signposts for detecting adaptation need to
climatic and economical changes and for adopting DAS to a forest management context.
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